тут:

Третья фаза желудочковой аритмии - аритмии сердца (5)

Оглавление
Аритмии сердца (5)
Электрофизиологические механизмы ишемических нарушений ритма желудочков
Первая фаза желудочковой аритмии
Реперфузионные нарушения ритма
Вторая фаза желудочковой аритмии
Третья фаза желудочковой аритмии
Преждевременное возбуждение желудочков
Пейсмекерная активность
Осцилляторная деполяризация мембранного потенциала
Циркуляторное возбуждение
Электрокардиографические проявления
Экстрасистолический ритм
Полиморфные ПВЖ
Клиническое значение поздних потенциалов
Желудочковая аритмия вследствие физической нагрузки
Желудочковая тахикардия при физической нагрузке
Желудочковая тахикардия и фибрилляция
Электрокардиографические признаки
Этиологические факторы
Синдром удлинённого интервала Q—Т
Приобретенные синдромы
Электрофизиологические исследования при желудочковой тахикардии
Поздние потенциалы
Определение поздних желудочковых потенциалов
Частота поздних потенциалов у больных с желудочковой тахикардией и без нее
Корреляции
Влияние антиаритмических способов
Прогностическое значение поздних потенциалов
Оценка состояния больных после инфаркта миокарда

У больных хронической ишемической болезнью сердца, перенесших инфаркт миокарда или страдающих аневризмой желудочков, возможно развитие рекуррентной стабильной желудочковой тахикардии [96, 97]. Было показано, что желудочковая тахикардия, аналогичная возникающей спонтанно, может быть вызвана у таких больных при программной электрической стимуляции желудочков с помощью катетерного электрода. Кроме того, после инициации тахикардии ее удается остановить с помощью той же электрической стимуляции. На основании проведенных клинических исследований был сделан вывод, что тахикардия, которая может быть вызвана и прекращена с помощью электрической стимуляции желудочков, обусловлена механизмом циркуляции возбуждения- последнее подтверждается исследованием изолированных препаратов миокардиальной ткани, где циркуляторная тахикардия инициируется и останавливается таким путем [98, 99]. Однако для окончательного доказательства этой гипотезы необходимо детальное картирование картины возбуждения желудочков во время аритмии. Следовательно, проведение более тщательных электрофизиологических исследований желудочковой тахикардии, вызываемой и прекращаемой преждевременным возбуждением, весьма важно, ибо именно такая тахикардия приводит к фибрилляции желудочков и внезапной смерти и может реагировать на антиаритмические препараты иначе, чем другие типы желудочковой аритмии. Исследования с целью определения механизмов и причинных факторов аритмии такого типа лучше всего проводить на экспериментальных животных, поскольку это позволяет легко осуществить регистрацию электрической активности во всех областях желудочков и выполнить множество различных экспериментальных вмешательств, которые невозможны в клинике [100].
Использование экспериментальной собачьей модели ишемии и инфаркта миокарда существенно улучшило наше понимание патофизиологических и фармакологических механизмов, принимающих участие в инициации желудочковой тахиаритмии при программной стимуляции у людей. В данном разделе мы обсудим некоторые достижения в этой области, осознавая вместе с тем, что имеющиеся в настоящее время знания ни в коей мере не являются полными.
Важное значение структуры и геометрии зоны инфаркта миокарда для индукции стойкой желудочковой тахикардии посредством преждевременного стимула желудочков, нанесенного в определенный момент, подчеркивается в работах Karagueuzian и соавт. [76, 101 ]. Авторы находят, что для обеспечения индукции аритмии необходима определенная критическая масса инфарктного или ишемического миокарда, составляющая в среднем 35 % левого желудочка. Более того, для возникновения стойкой желудочковой тахикардии структура инфарктной зоны должна, быть гетерогенной, т. е. гибель миокардиальных клеток в" зоне инфаркта не должна быть однородной, или гомогенной, и в тесной близости от некротизированных клеток должно определяться некоторое количество жизнеспособных миокардиальных клеток. Такая структура ишемического повреждения миокарда, способствующая возникновению нарушений ритма, обеспечивается временной окклюзией коронарной артерии с последующей реперфузией [75, 76, 101]. Получаемая при этом структура поврежденной зоны позволяет легко (т. е. с помощью одного преждевременного возбуждения) (рис. 6.13) и воспроизводимо индуцировать тахикардию в отличие от модели инфаркта миокарда, вызываемого постоянной окклюзией коронарной артерии, где гибель миокардиальных клеток относительно гомогенна и индукция стабильной желудочковой тахикардии удается значительно реже [76, 100, 101]. У собак с постоянным инфарктом и гомогенным некрозом миокардиальных клеток легко индуцируется только нестойкая (продолжительностью менее 10 с) желудочковая тахикардия. Более того, поскольку эксперимент проводился на бодрствующих собаках и каждая собака исследовалась в течение нескольких дней, удалось установить связь между возрастом инфаркта и частотой индукции тахикардии [76, 100, 101]. Как было показано, при старении инфаркта (спустя неделю) аритмия больше не индуцируется преждевременным стимулом, что, вероятно, отражает изменение электрофизиологических свойств миокардиальных клеток в зоне ишемии («стабилизация» пораженного желудочка). Отметим, однако, что в эксперименте на собаках с открытой грудной клеткой индукция нарушений ритма была возможна вплоть до 3 нед [102]. Это, по-видимому, связано с повышением уровня циркулирующего катехоламина в подобной модели, что, как известно, облегчает индукцию аритмии и в экспериментальных [94], и в клинических условиях [124]. Следует также отметить, что у кошек экспериментальный инфаркт миокарда, вызванный окклюзией коронарной артерии, сопровождается спонтанными нарушениями ритма желудочков в течение 6 мес после заживления острого повреждения [103]. Остается выяснить, можно ли на кошачьей модели в течение столь же продолжительного периода времени индуцировать желудочковую тахикардию посредством стимуляции.

приступ желудочковой тахикардии

Рис. 6.13. Возникновение продолжительного приступа желудочковой тахикардии у собаки на 3-й день реперфузии после 2-часовой окклюзии левой передней нисходящей коронарной артерии.
На всех фрагментах ЭКГ (А—Г) желудочки стимулировались с постоянным интервалом в 350 мс и на этом фоне наносился одиночный экстрастимул (стрелка) желудочков. А — интервал сцепления стимулированного экстравозбуждения составляет 205 мс- затем следует одно невызванное возбуждение. Синусовый ритм возобновляется после паузы 390 мс. Б — интервал сцепления преждевременного импульса, вызванного стимуляцией, составляет 195 мс- затем отмечается 5 невызванных возбуждений. Морфология QRS и длительность цикла спонтанных возбуждений вариабельны. После паузы в 720 мс синусовый ритм восстанавливается. В — интервал сцепления стимулированного экстравозбуждения — 190 мс- затем в течение 10 мин наблюдается тахикардия- нижняя запись на этом фрагменте получена через 8 мин после инициации тахикардии. Г — за одиночным преждевременным импульсом, вызванным стимуляцией (интервал 170 мс), следуют 2 невызванных импульса. Синусовый ритм возникает через 760 мс [76]

Значение объема инфарктного повреждения миокарда для возникновения аритмии в модели окклюзии коронарной артерии с последующей реперфузией было впоследствии изучено Gang и соавт. [114]. Они показали, что при обширном инфаркте порог фибрилляции снижается и стойкая желудочковая тахикардия индуцируется гораздо легче [114]. Аритмогенный потенциал гетерогенного инфаркта миокарда, экспериментально вызванного у собаки окклюзией коронарной артерии с последующей реперфузией, отмечается Michelson и соавт. [104]. Определяя существенную неоднородную возбудимость и рефрактерность миокарда в гетерогенной зоне инфаркта, авторы обнаружили значительную несоразмерность этих параметров. Они полагают, что подобная несоразмерность вполне может способствовать индукции нарушений ритма при программной электрической стимуляции [104]. Более того, они показали, что место электрической стимуляции по отношению к локализации инфаркта имеет важное значение для индукции аритмии [105]. Например, наибольший успех индукции нарушений ритма достигался при стимуляции интрамуральным электродом, расположенным на глубине до 2 см в зоне инфаркта [105]. Проводились также микроэлектродные исследования миокардиальных тканей, изолированных из собачьего сердца после инфаркта, вызванного окклюзией и реперфузией ЛПНКА. Karagueuzian и соавт. [75] исследовали характеристики трансмембранных потенциалов субэндокардиальных волокон в инфарктной зоне. Они обнаружили, что в течение периода, когда сердце интактной собаки наиболее чувствительно к индукции тахикардии при электрической стимуляции, выжившие субэндокардиальные волокна Пуркинье и клетки рабочего миокарда были практически нормальны и преждевременные импульсы проводились в этом месте без всякой задержки [75]. В них не наблюдались также ни задержанная постдеполяризация, ни триггерная автоматическая активность [75]. Авторы пришли к заключению, что выжившие субэндокардиальные волокна вблизи зоны инфаркта нельзя рассматривать как основное место возникновения нарушений ритма [75]. Таким образом, в развитии нарушений ритма, возможно, участвуют и другие структуры, а именно: интрамуральные и субэпикардиальные мышечные клетки, окружающие зону инфаркта [100]. Несколько позже Spear и соавт. [106] исследовали характеристики трансмембранных потенциалов изолированных субэпикардиальных мышечных волокон вокруг зоны инфаркта у собак после кратковременной окклюзии коронарной артерии и последующей реперфузии. Они отметили, что потенциал покоя, амплитуда потенциала действия, максимальная скорость деполяризации и длительность потенциала действия на уровне 30 % реполяризации в инфарктной зоне значительно меньше, чем в нормальном миокарде. Более того, скорость проведения в зоне инфаркта снижена до 0,15 м/с по сравнению с 0,54 м/с в норме [106]. Кроме того, авторы считают, что уменьшение постоянного пространства в эпикарде инфарктной зоны является еще одним важным фактором (помимо снижения реактивности мембраны) замедления скорости проведения [107]. Медленное проведение и угнетение трансмембранных потенциалов эпикардиальных мышечных клеток в инфарктной зоне у собак с постоянной окклюзией ЛПНКА описаны Gessman и соавт. [108].
Механизм развития желудочковой тахикардии при электрической стимуляции на поздней стадии инфаркта миокарда изучался многими исследователями [109, НО]. В этих исследованиях с помощью метода компьютерного мультиплексирования и биполярной ЭГ-регистрации во многих точках в желудочках составлялись изохронные карты активации желудочков во время тахикардии. Исследования проводились с целью определения картины и последовательности активации желудочков при тахикардии для выяснения механизма и места происхождения аритмии. El-Sherif и соавт. [109] показали, что причиной 21 % индуцированных возбуждений является циркуляция, возникающая на эпикардиальной поверхности зоны инфаркта. Более того, авторам удалось доказать существование в сердце in situ зоны функционального блока проведения, вокруг которого волновой фронт активации распространяется радиально, вызывая повторное возбуждение желудочков [109]. Как полагают эти исследователи, эпикардиальные отведения имеют ограниченную ценность для анализа индуцированных возбуждений желудочков, поскольку в процесс развития аритмии вполне могут вовлекаться не только эпикардиальные волокна зоны инфаркта, но и другие структуры, а именно выжившие мышечные клетки, расположенные интрамурально в инфарктной зоне [76, 100, 101]. Тщательное исследование Wit и соавт. [110], в котором осуществлялась одновременная регистрация в 192 различных точках эпикарда, также показало, что наиболее вероятным механизмом возникновения индуцированной желудочковой тахикардии является циркуляция. Относительно места ее происхождения авторы полагают, что нестабильная форма тахикардии развивается в передней части левого желудочка на границе между инфарктной зоной и выжившим эпикардом по ее периметру, как это показывают характеристики циркуляторного движения возбуждения в эпикарде. Однако при стойкой форме индуцированной тахикардии в выжившем эпикарде не наблюдается такого циркуляторного движения волны активации, что свидетельствует о вовлечении в процесс других участков миокарда [100, 110]. Действительно, недавние исследования Kramer и соавт. [130] показали, что интрамуральные клетки пораженного инфарктом левого желудочка у собак вполне могут быть местом возникновения подобной циркуляторной желудочковой тахикардии. Весьма интересно отметить, что при охлаждении замкнутого пути, участвующего в поддержании индуцированной тахикардии на эпикардиальной поверхности, аритмия сразу же прекращалась [108, 111].
Можно не без удовольствия отметить, что характеристики трансмембранных потенциалов в выживших эпикардиальных клетках обнаруживают угнетение потенциалов действия и замедление скорости проведения, что дает вполне приемлемое объяснение для части циркуляторных возбуждений, вызванных на данном участке. Однако еще предстоит установить изменения клеточной электрофизиологии и точную анатомическую локализацию источника вызванных желудочковых возбуждений, возникающих не на эпикардиальной поверхности, как в случае индуцированной стойкой желудочковой тахикардии. В своих ранних исследованиях с использованием композитных электродов для регистрации в обширных областях эпикарда El-Sherif и соавт. [112, 113] интерпретируют наличие непрерывной электрической активности, длящейся при тахикардии в течение всего сердечного цикла, как доказательство возникновения циркуляции, хотя последовательность электрической активации желудочка не определялась. Однако Wit и соавт. [40, 110] считают, что подобная электрическая активность, зарегистрированная в заданном месте, не может служить доказательством циркуляции. Авторы представили убедительные данные одновременной регистрации активности во многих точках и составленные ими изохронные карты, показывающие, что электрическая активность на исследуемом участке регистрируется в течение всего сердечного цикла в отсутствие явной циркуляции [НО]. Аналогичные данные получены Janse и соавт. [18] при регистрации активности вскоре после окклюзии коронарной артерии. Следовательно, как полагают Wit и соавт., в настоящее время представляется разумным не считать возникновение непрерывной электрической активности показателем циркуляции возбуждения, даже если такая активность определяется в той области, где циркуляция возбуждения может не наблюдаться [40, 110].

Связь с клиническими явлениями

Почти все электрофизиологические аномалии на клеточном уровне, наблюдаемые на собачьей модели инфаркта миокарда, отмечаются и в изолированном миокарде желудочков человека при хроническом инфаркте и ишемии. Это говорит о том, что клеточные электрофизиологические механизмы желудочковой тахиаритмии у людей могут быть аналогичными таковым при ишемических нарушениях ритма желудочков у собаки.
Spaer и соавт. [122] зарегистрировали трансмембранные потенциалы сердечных волокон на эндокардиальной поверхности препаратов, выделенных из зоны инфаркта или аневризмы у человека (рис. 6.14). Хотя некоторые из этих потенциалов действия, по-видимому, характерны для волокон Пуркинье, остальные же могли быть зарегистрированы в мышечных клетках желудочков. В некоторых из выживших волокон наблюдались фаза 4 деполяризации и автоматическое возникновение импульса. Такие потенциалы действия распространялись медленно и были чувствительны к верапамилу. Более того, в тканях, выделенных из области аневризмы, наблюдались разноамплитудные потенциалы действия — от нормального до быстроугнетенного и медленного ответов. Авторы

зона инфаркта

Рис. 6.14. Трансмембранные потенциалы, зарегистрированные на эндокардиальной поверхности в зоне инфаркта у человека.
Слева отмечаются спонтанная активность волокна и деполяризация в фазу 4. S — начало стимуляции с основным интервалом 450 мс. Первый и третий стимулы возбуждают волокно. На основании этой записи невозможно установить принадлежность данной клетки волокну Пуркинье или желудочковому миокарду [122].

полагают, что гетерогенность электрофизиологических свойств этих выживших клеток может обусловить возникновение желудочковой тахиаритмии у таких больных [122]. Позднее Dangman и соавт. [123] показали, что в волокнах Пуркинье, выделенных у 5 больных, подвергшихся операции по трансплантации сердца, под действием оуабаина и катехоламинов развиваются задержанная постдеполяризация и триггерный автоматизм, что указывает на возможность функционирования триггерного автоматического механизма и в желудочке человека [116].

Фармакологические подходы

Реакция индуцируемой желудочковой тахиаритмии на антиаритмические препараты при хроническом (стадия III) инфаркте миокарда отличается от наблюдаемой при 24-часовой спонтанной желудочковой аритмии. Тахиаритмия в хроническую стадию часто оказывается резистентной к большинству медикаментозных препаратов (93, 104, 115]. Это представляет разительный контраст с 24-часовой аритмией, которая безусловно контролируется практически любым антиаритмиком [93—95]. Причина (ы) такой резистентности к медикаментам остается во многом неясной. Не установлено, например, связана ли резистентность с невозможностью проникновения препарата к месту возникновения аритмии и прилегающим участкам миокарда в достаточно высокой концентрации (в 4—10 раз превышающей его сывороточный уровень), или же она присуща этому конкретному месту и относительно независима от концентрации препарата. Предварительные результаты, полученные Karagueuzian и соавт. [116], указывают, что повышение миокардиальной концентрации прокаинамида при его введении непосредственно в коронарную систему вблизи инфарктной зоны угнетает и предотвращает индуцируемую желудочковую тахикардию, которая обычно резистентна к прокаинамиду при внутривенном введении. В этом исследовании прокаинамид вводили собакам через специально сконструированный самонадувающийся баллонный катетер в большую сердечную вену через 3—8 дней после постоянной окклюзии ЛПНКА [11 6]. Прокаинамид, введенный в большую сердечную вену (5—20 мг/кг), бывает гораздо эффективнее, чем при обычном внутривенном введении (35 мг/кг) в предупреждении и прекращении тахикардии, вызываемой электрической стимуляцией. При введении через большую сердечную вену содержание прокаинамида в миокарде бывает в 15—20 раз выше, чем при его введении через системную вену. Необходимость стабильного сверхвысокого уровня дизопирамида в плазме крови для прекращения желудочковой тахиаритмии, индуцируемой в хроническую стадию инфаркта сердца собаки, отмечается Patterson и соавт. [117]. Интересно также отметить, что бретилий необычайно эффективен в подавлении вызываемой желудочковой тахикардии в сердце собаки [118], что может быть обусловлено (по крайней мере отчасти) его способностью к накоплению в миокарде, где содержание препарата иногда в 14 раз превышает его плазменный уровень [119]. В связи с этим представляется логичным предположение, что более высокая эффективность амиодарона в подавлении желудочковой тахиаритмии (содержание в тканях правого желудочка в 7 раз выше, чем в плазме крови) также объясняется способностью препарата к накоплению в миокарде [120]. Однако для прекращения аритмии не всегда бывает достаточно простого повышения содержания препарата в миокарде. По-видимому, возможность подавления аритмии определяется избирательным повышением концентрации препарата на некоторых критических участках миокарда (в зависимости от места возникновения нарушений ритма) [11 6]. Однако эти соображения требуют дальнейшего выяснения и экспериментального подтверждения.
Приятно также отметить существенное сходство реакций аритмии на антиаритмические препараты в экспериментальных и клинических условиях. По наблюдениям Myerburg и соавт. [121], больным с ишемической болезнью сердца для устранения желудочковых нарушений ритма в хроническую стадию инфаркта миокарда требуется более высокая концентрация прокаинамида в плазме, чем во время острой стадии, что (как и в эксперименте на собаках) указывает на различия в механизме или месте происхождения аритмии, индуцируемой на разных стадиях инфаркта [121]. Более того, в ряде других исследований было показано, что индуцируемая желудочковая тахиаритмия часто оказывается резистентной как к обычным, так и к новым антиаритмическим препаратам (табл. 6.1). По данным 5 работ, охватывающих 250 больных, у большинства из которых отмечены заболевание коронарных сосудов и аневризма желудочков, резистентность к антиаритмическим препаратам варьирует от 9,5 до 47,5 % (в среднем 26,3 %). Такая реакция на антиаритмики, видимо, отличается от наблюдаемой при желудочковой тахиаритмии во время острой внутрибольничной фазы, когда большинство нарушений ритма желудочков, безусловно, поддается контролю.

Таблица 6.1. Нарушения ритма желудочков после окклюзии коронарной артерии: тип, продолжительность, механизмы, место возникновения и реакция на антиаритмические препараты

Характеристики аритмии

Фаза 1

Фаза 2

Фаза 3

Тип

ЖТ/ФЖ

ЖТ

ЖТ/ФЖ

Длительность в постокклюзионный период

15—30 мин

6—72 ч

3—12 дней

Место возникновения

Ишемические кардиомиоциты Волокна Пуркинье? Нормальный миокард, граничащий с зоной ишемии

Субэндокардиальные волокна Пуркинье в зоне инфаркта Субэпикард, покрывающий зону инфаркта

Субэпикард, покрывающий зону инфаркта Выжившие интрамуральные кардиомиоциты Волокна Пуркинье?

Механизмы

Циркуляция Автоматизм (ранняя постдеполяризация)

Аномальный автоматизм Триггерный автоматизм Циркуляция?

Циркуляция Триггерный автоматизм?

Реакция на антиаритмики

Обычно резистентны

Обычно подавляются

Обычно резистентны

ЖТ — желудочковая тахикардия- ФЖ — фибрилляция желудочков- ? — данные неопределенны.

Заключение

Несмотря на то что модель ишемической болезни сердца в эксперименте на животных во многих отношениях отличается от ее клинических аналогов, она тем не менее обеспечивает получение важной информации и позволяет углубить наше понимание механизмов потенциально летальных нарушений ритма желудочков. С одной стороны, экспериментальные данные позволяют по-новому оценить наблюдаемые клинические состояния, с другой же — решение многих важных вопросов, возникающих в клинической лаборатории катетеризации сердца, дает стимул для дальнейшей экспериментальной работы. Мы рассмотрели здесь лишь некоторые из существующих патофизиологических и фармакологических связей. Несомненно, в ближайшем будущем нас ждут многие более важные открытия.


Поделись в соц.сетях:

Внимание, только СЕГОДНЯ!

Похожее