тут:

Эмбриональное развитие структуры и функции печени - болезни органов пищеварения у детей

Оглавление
Болезни органов пищеварения у детей
Полость рта
Болезни зубов
Пороки развития неба и мягких тканей полости рта
Болезни слизистой оболочки полости рта и десен
Болезни губ и языка
Слюнные железы
Желудочно-кишечный тракт
Основные причины желудочно-кишечных расстройств
Пищевод
Атрезия и пищеводно-трахеальный свищ
Гортанно-трахеально-пищеводная расщелина,  врожденный стеноз пищевода
Другие болезни пищевода
Желудок и кишечник
Язвенная болезнь
Врожденный гипертрофический стеноз привратника
Врожденная непроходимость кишечника
Врожденная непроходимость двенадцатиперстной кишки
Нарушения поворота кишечника
Врожденная непроходимость тонкой кишки
Врожденный мегаколон
Дивертикулы и дупликатуры
Приобретенная непроходимость кишечника
Инвагинация кишечника
Инородные тела желудка и кишечника
Двигательные расстройства. желудка и кишечника
Аномалии строения аноректальной области
Инфекционные болезни кишечника
Неспецифический язвенный колит
Болезнь Крона
Некротический энтероколит новорожденных
Энтероколит, связанный с лечением антибиотиками
Желудочно-кишечные симптомы анафилактоидной пурпуры, гемолитико-уремического синдрома
Непереносимость пищевых белков
Эозинофильный гастроэнтерит
Синдромы нарушения всасывания
Мальабсорбция
Иммунодефицитные состояния и кишечник
Синдром «застойной петли»
Синдром короткой тонкой кишки
Целиакия
Синдром мальабсорбции после острого энтерита
Тропическая спру
Болезнь Уиппла, лимфангиэктазия кишечника, болезнь Уолмапа, идиопатическое диффузное поражение слизистой
Энзимопатии и нарушения механизмов транспорта питательных веществ
Синдром раздраженной толстой кишки
Острый аппендицит
Болезни ануса, прямой и толстой кишки
Опухоли пищеварительного тракта у детей
Грыжи пищеварительного тракта у детей
Экзокринная часть поджелудочной железы
Панкреатит
Эмбриональное развитие структуры и функции печени
Диагностика болезней печени
Холестатические состояния у грудных детей
Паренхиматозные желтухи у детей грудного возраста
Нарушения метаболизма печени и желчевыделительной системы
Аномалии строения желчных путей
Кисты желчных протоков
Холестаз и болезни печени, связанные с полностью парентеральным питанием
Лекарственное поражение печени
Синдром Рея
Хронический гепатит
Болезнь Вильсона—Коновалова
Индийский ювенильный цирроз
Поражения печени при хронических колитах
Цирроз и хроническая печеночная недостаточность
Портальная гипертензия и варикозное расширение вен пищевода
Жировая инфильтрация печени
Холецистит
Болезни брюшины
Перитонит
Грыжы брюшины

Видео: Анатомия Человека - Сердце

ПЕЧЕНЬ И ЖЕЛЧЕВЫДЕЛИТЕЛЬНАЯ СИСТЕМА

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ СТРУКТУРЫ И ФУНКЦИИ ПЕЧЕНИ

Анатомический и клеточный морфогенез. Знание эмбриологии и анатомии печени и желчных путей позволяет понять физиологию и патофизиологию этого органа, а также врожденные поражения желчных протоков, вызванные нарушениями органогенеза.
Печень, желчные протоки и желчный пузырь происходят из группы клеток, образующих вентральный мешок в первичной передней кишке. На 18—22-й день внутриутробного развития этот мешок разделяется на 2 зачатка (рис. 12-20, эмбрион длиной 3 мм): солидный краниальный, из которого формируется печень, и полый каудальный, из которого формируются желчный пузырь, пузырный и общий желчный протоки.
Эпителиальные тяжи и канальцы из краниального зачатка контактируют с кровеносными сосудами в прилежащей мезенхимальной поперечной перегородке (рис. 12-20, эмбрион длиной 5 мм). Сеть примитивных гепатоцитов, синусоидов и мезенхимальных перегородок уже на 5—6-й неделе внутриутробного развития образует структуру, соответствующую архитектонике дольки зрелой печени (рис. 12-20, эмбрион длиной 7 мм). Холангиолы образуются из везикул, которые появляются в гепатоцитах вокруг мельчайших ветвей воротной вены. Канальцы — особые участки поверхности печеночных клеток, по которым секретируется желчь, появляются в виде маленьких везикул между гепатоцитами на 6-й неделе развития.
Желчный пузырь и общий желчный проток формируются из каудального зачатка печеночного мешка. Пузырный проток образуется на 4-й неделе (рис. 12-20, эмбрион длиной 12 мм). Вначале желчный пузырь и печеночные протоки полые, но затем пролиферирующая эпителиальная выстилка закрывает просвет. Этот эпителий подвергается вакуолизации на 7-й неделе, вследствие чего происходит реканализация общего желчного протока, а затем пузырного, которая распространяется в дистальном направлении, окончательно образуя желчный пузырь.

Стадии эмбрионального развития печени, желчных протоков и желчного пузыря
Рис. 12-20. Стадии эмбрионального развития печени, желчных протоков и желчного пузыря. (С разрешения д-ра Н. Linder.)

Строение системы внутрипечеиочных желчных протоков

Рис. 12-21. Строение системы внутрипечеиочных желчных протоков.

В полностью сформировавшемся организме печеночный конец билиарной системы представлен межклеточными канальцами. Они открываются в желчные проточки. Из последних образуются междольковые желчные протоки, идущие параллельно терминальным ветвям воротной вены (рис. 12-21). Междольковые протоки сливаются в ходы большего размера, которые в воротах печени отходят от воротной вены и продолжаются во внепеченочные желчные ходы. Правый и левый лобарные протоки идут вне печени- они называются печеночными протоками, при их слиянии образуется общий печеночный проток, лежащий кпереди от воротной вены. Последний соединяется с пузырным протоком, образуя общий желчный проток. Он направляется дистально по правому краю малого сальника, заканчиваясь в области интрамурального большого дуоденального (фатерова) сосочка на левой стенке двенадцатиперстной кишки. Здесь общий желчный проток объединяется с главным панкреатическим протоком, формируя печеночно-поджелудочную (фатерову) ампулу. Сфинктер Одди охватывает внутридуоденальную часть общего желчного протока, панкреатического протока (у 80% людей) и ампулу. Этот состоящий из гладкомышечных волокон сфинктер регулирует поступление желчи в кишечник, препятствует забросу желчи в панкреатический проток и кишечного содержимого в протоки.
Разделение печени на доли происходит на ранних этапах внутриутробного развития, когда начинают разветвляться желчные протоки и идущие с ними ветви печеночной артерии и воротной вены. Печеночные тяжи, образованные рядами гепатоцитов и разделенные на синусоиды, конвергируют с ветвями печеночной вены, расположенной в центре дольки- желчь через канальцы и холангиолы поступает в междольковые протоки. Секретируемые печенью продукты, такие как белки плазмы, транспортируются из афферентных сосудов (воротная вена и печеночная артерия) через синусоиды в общую систему циркуляции (центральная вена). Компоненты желчи перемещаются по системе расширяющихся протоков от канальцев до общего желчного протока и изливаются в кишечник.
Функциональное развитие. Зрелая печень — основной орган, поддерживающий постоянство внутренней среды организма. Печень поглощает всосавшиеся питательные вещества и превращает их в компоненты, участвующие в метаболических процессах, или в конечные неиспользуемые продукты- первые поступают в кровь или желчь, а последние — только в желчь. Эта функция обеспечивается тем, что гепатоциты расположены рядами, между которыми идут каналы с циркулирующими в них кровью и желчью, причем направления движения этих жидкостей перпендикулярны друг другу.
Материнская печень через плаценту обеспечивает плод энергией и питательными веществами, она же выводит шлаки. Процессы гликогенолиза, образования желчных кислот и элиминации шлаков в печени плода протекают относительно слабо. Главная функция печени во внутриутробный период состоит в образовании белков плазмы в соответствии с потребностями развивающейся сосудистой системы и быстро пролиферирующих тканей. Позднее печень синтезирует и накапливает незаменимые питательные вещества, которые необходимы в ранний постнатальный период. До рождения портальная циркуляция идет, минуя печень, через шунт (венозный проток). После рождения в портальную систему поступают питательные вещества из кишечника- венозной проток закрывается, а питательные вещества доставляются к печеночной паренхиме, где они стимулируют синтез желчных кислот и реакции биотрансформации в микросомах, а также усиливают отток желчи.
Регуляция энергетических процессов. Печень плода накапливает гликоген — полимер углеводной природы, легко распадающийся до мономерной глюкозы. Жизнь новорожденного полностью зависит от запасов гликогена в печени, поскольку он обеспечивает организм глюкозой, поступление которой внезапно прекращается в момент рождения. Печень начинает синтезировать гликоген уже на 9-й неделе, однако быстрое накопление его происходит только перед родами и достигает 20 мг/г печени в сутки. К моменту рождения печень плода содержит в 2—3 раза больше гликогена, чем печень взрослого человека. Примерно 90% накопленного гликогена расходуется в первые 2—3 ч после рождения, когда внезапно прекращается плацентарное кровоснабжение. Остальной гликоген постепенно расходуется в течение последующих 48 ч, и накопление его вновь начинается только на 2-й неделе постнатальной жизни. Концентрация его достигает уровня, свойственного взрослому организму, на 3-й неделе у родившегося в срок ребенка (при условии нормального питания). Печень плода начинает также накапливать жир на ранних стадиях развития, и этот процесс значительно ускоряется перед рождением. Накопленный жир постепенно расходуется в первые дни жизни.
Синтез белков. Печень — основной источник поступающих в кровь белков, включая белки плазмы, ферменты и факторы свертывания крови. В организме плода белок идет на формирование тканей и плазмы- кроме того, бурный рост печени перед рождением требует, чтобы процессы образования ядерных и цитоплазматических структур клетки протекали с максимальной интенсивностью. Альбумин присутствует в плазме уже на 8-й неделе внутриутробного развития, к моменту рождения концентрация его возрастает от 20 г/л почти до уровня, характерного для взрослых, в то время как уровень альфа-глобулинов, содержавших альфа-фетопротеин, заметно снижается. В срезах печени 3-4 месячного плода аминокислоты включаются во все фракции сывороточных белков, а также в фибриноген, трансферрин и липопротеины низкой плотности. Начиная с 11-й недели плазма плода содержит все основные белки, но их концентрация значительно ниже, чем во взрослом организме (в частности, это касается церулоплазмина, липопротеинов низкой плотности и гаптоглобина). У млекопитающих печень плода, как и зрелая печень, способна синтезировать дополнительные белки-реактанты в ответ на стрессовые воздействия.
В постнатальной жизни содержание одних белков достигает уровня, характерного для взрослых, в течение нескольких дйей, а других —в течение 1—2 лет. В первые 3—4 дня после рождения концентрация липопротеинов всех типов возрастает до величин, которые затем не меняются вплоть до периода прлового созревания. В то же время уровень альбумина повышается постепенно, в течение нескольких месяцев. Количество церулоплазмина и факторов комплемента увеличивается медленно, от очень низкого уровня до почти взрослого, в течение первого года жизни. В противоположность этому содержание трансферрина в крови к моменту рождения соответствует его уровню у взрослых- в последующие 3—5 мес. оно снижается и только затем вновь начинает возрастать до исходного уровня.
Биотрансформация и выделение метаболитов. Монооксигеназная система. Окислительные, восстановительные, гидролитические реакции и реакции конъюгации, участвующие в биотрансформации, происходят в микросомах, т. е. в гладком эндоплазматическом ретикулуме (ГЭР) гепатоцитов. Хотя содержание ГЭР в печени новорожденного очень невелико, а активность микросомальных ферментов вообще не определяется или чрезвычайно низка, основные субстраты, осуществляющие перенос электронов и входящие в монооксигеназную систему (цитохром Р-450, цитохром b, цитохром с редуктаза, НАДФ-цитохром Р-450 редуктаза), обнаруживаются в микросомальной фракции уже на 7-й неделе внутриутробного развития. Активность цитохрома Р-450 и НАДФ-цитохром с редуктазы у плода составляет 25 и 50% активности у взрослых соответственно. Определение в моче метаболитов широко применяемых лекарственных веществ (диазепама, кофеина, фенобарбитала, дифенилгидантоина) показывает, что способность к окислению этих веществ у детей, родившихся в срок, очень низка и практически отсутствует у недоношенных. Аналогичным образом период полувыведения лекарств (процесс, катализируемый монооксигеназной системой, зависимой от цитохрома Р-450) у детей грудного возраста значительно больше, чем у взрослых- в частности, период полувыведения толбутамида, дифенилгидантоина и амобарбитала у детей в 2—5 раз больше, чем у их матерей.
Монооксигеназная активность печени плода позволяет превращать лекарства в потенциально опасные метаболиты уже в первом триместре- возможно, что лекарства, принимаемые матерью на ранних стадиях беременности, влияют на развитие печени и других органов. С другой стороны, относительная неэффективность реакций биотрансформации при рождении может привести к тому, что назначаемые новорожденному лекарства будут действовать чрезмерно сильно или слишком долго. Созревание монооксигеназной системы после рождения происходит довольно быстро.
Реакции конъюгации. Реакции конъюгации превращают метаболиты или конечные продукты в вещества, которые могут элиминироваться с желчью- эти реакции катализируются микросомальными ферментами печени. Фетальная печень почти полностью лишена глюкуронилтрансферазной активности, ответственной за превращение токсичного свободного билирубина в экскретируемый связанный билирубин. Количество трансферазы после рождения возрастает, но все же возможность конъюгировать билирубин в этот период весьма ограничена. Механизмы, индуцирующие конъюгацию билирубина, изучены недостаточно полно. В первую неделю после рождения наблюдается транзиторная гипербилирубинемия, главным образом вследствие относительной недостаточности глюкуронилтрансферазы. В крови, взятой из пуповины, нет связанного билирубина. Моноконъюгаты билирубина появляются в первые 24—48 ч в определенной последовательности, а деконъюгирование происходит на 3-й день. В отличие от пупочной крови здоровых новорожденных пупочная кровь детей с пренатальной гипербилирубинемией вследствие групповой несовместимости содержит и моно-, и диглюкурониды билирубина. Таким образом, активность глюкуронилтрансферазы может быть индуцирована во внутриутробный период, если концентрация билирубина в крови плода длительное время повышена.
Активность микросомальной глюкуронилтрансферазы в отношении билирубина и других субстратов можно стимулировать такими лекарствами, как барбитураты, которые также индуцируют выработку цитохрома Р-450 и других компонентов монооксигеназной системы. Механизм действия таких лекарств на активность микросомальных ферментов заключается в изменении свойств мембран, на которых эти ферменты локализуются.
Метаболизм желчных кислот. Желчные кислоты относятся к стероидам- они облегчают процесс образования в водной среде смешанных мицелл, содержащих холестерин и фосфолипиды. Гидрофобная сердцевина и гидрофильная наружная часть мицеллы обеспечивают растворение и абсорбцию в кишечнике таких гидрофобных веществ, как липиды, жирные кислоты и жирорастворимые витамины. Две первичные желчные кислоты, холевая и хенодезоксихолевая, синтезируются в печени, конъюгируются с аминокислотами глицином и туарином, а затем экскретируются с желчью. Конъюгация желчных кислот влияет на их всасывание в тощей кишке, благодаря чему их концентрация в верхней части тонкой кишки поддерживается выше критического уровня, необходимого для образования мицелл. После всасывания пищевых жиров конъюгированные желчные кислоты реабсорбируются в терминальной части подвздошной кишки, попадают обратно в печень и реэкскретируются с желчью. Такая кишечно-печеночная циркуляция происходит после каждого приема пищи, при этом реабсорбируется 90—95% желчных кислот, выделяющихся во время каждого цикла.
Те желчные кислоты, которые не всосались в подвздошной кишке, подвергаются дегидроксилированию под действием кишечных бактерий, при этом образуются вторичные желчные кислоты. Холевая кислота превращается в дезоксихойевую, а хенодезоксихолевая — в литохолевую. Содержание различных кислот в нормальной желчи примерно следующее: хоревая — 50%, хенодезоксихолевая — 30%, дезоксихолевая — 15%/и литохолевая—5%. У млекопитающих новорожденные отличаются относительной недостаточностью процессов образования, кишечной реабсорбции и экскреции желчных кислот. Поскольку у новорожденных концентрация желчных кислот в кишечнике часто ниже, чем требуется для образования мицелл  (1—2 ммоль), пищевые жиры всасываются не полностью. Печень плода вырабатывает значительное количество 31-гидрокси-Д5-холеноевой кислоты, что может стать причиной холестаза. В процессе внутриутробного развития концентрация этой желчной кислоты постепенно падает.
У новорожденного продукция желчных кислот примерно вдвое ниже, чем у взрослого, и соответственно ниже их концентрация в кишечнике. В результате большая потеря желчных кислот с калом сопровождается недостаточной их реабсорбцией в кишечнике. У недоношенных детей концентрация желчных кислот в кишечнике значительно ниже критического уровня, необходимого для образования мицелл.

Неполноценность кишечнопеченочной циркуляции подтверждается пробой с пищевой нагрузкой (концентрация конъюгированной холевой кислоты в плазме остается высокой в течение 2 ч после еды).
Неполноценность процессов образования и циркуляции желчи у новорожденных проявляется значительными потерями желчных кислот с калом, мальабсорбцией пищевых жиров и жирорастворимых веществ, а также склонностью к холестазу.


Видео: Строение глаза

Поделись в соц.сетях:

Внимание, только СЕГОДНЯ!

Похожее